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Introduction

In this chapter, we will define non-ideal fluids and study the properties that arise from
viscosity. Our study will be limited to incompressible fluids.

We will focus on the following topics:

• The Navier–Stokes equation

• Momentum Equation

• Dimensional Analysis

• Reynolds Number
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Viscosity

Viscosity is the property of a fluid that quantifies its resistance to deformation due to velocity
gradients between adjacent fluid layers. It acts to reduce these differences by exerting internal
friction, thereby smoothing out velocity variations over time.
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Viscosity Coefficient η

Fluids with a constant viscosity coefficient η, regardless of the applied shear, are called
Newtonian fluids.

Force

Area
= η · ∂ux

∂y

The kinematic viscosity ν is defined as the ratio of dynamic viscosity to density:

ν =
η

ρ
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Viscous force density

We observe that the viscous force acts parallel to the surface — it corresponds to a shear
stress. In contrast, pressure is associated with the microscopic collisions of particles
perpendicular to the surface, representing a normal stress.

The upper fluid layers, which move at higher velocities, exert shear forces that tend to entrain
the slower-moving lower layers beneath them.

Therefore, the presence of viscosity ensures the existence of a force component parallel to the
surface, known as the viscous force density:

Force

Volume
= η · ∇⃗2u⃗
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Navier–Stokes Equation

The Navier–Stokes equations represent the momentum equation for a fluid, including the
viscous force density.

ρ

(
∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗

)
= −∇⃗P + f⃗ + η ∇⃗2u⃗

• acceleration

• force per unit volume due to pressure

• force per unit volume due to external forces

• force per unit volume due to viscosity
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Momentum Equation

The momentum equation is written as:

∂

∂t
(ρu⃗) + ∇⃗Π = f⃗ → ∂

∂t
(ρui ) +

3∑
j=1

∂Πij

∂xj
= fi

In the momentum flux tensor Πij , the effect of viscosity must be included:

Πij = ρuiuj − σij

where the stress tensor σij is:
σij = −Pδij + σ′

ij

and the viscous stress tensor is:

σ′
ij = η

(
∂ui
∂xj

+
∂uj
∂xi

)
→ viscous contribution in Cartesian coordinates
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Dimensional Analysis

The Navier–Stokes equation for an incompressible, steady flow without external forces is:

ρ

(
�
��
∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗

)
= −∇⃗P + ��⃗f + η ∇⃗2u⃗

Define the following dimensionless variables:

r⃗ = Lr⃗∗, ∇⃗ =
1

L
∇⃗∗, u⃗ = Uu⃗∗, P = ρU2P∗

Substituting into the Navier–Stokes equation and simplifying leads to the dimensionless form:

(u⃗∗ · ∇⃗∗)u⃗∗ = −∇⃗∗P∗ +
1

Re
∇⃗∗2u⃗∗, where Re =

ρUL

η
=

UL

ν
(Reynolds number)
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Dimensional Analysis

Therefore, if two different flows of the same type (e.g., flow around a sphere) have the same
Reynolds number Re , then knowing the solution for one flow allows us to determine the
solution for the other.

• Characteristic velocity (e.g., velocity far from the object)

• Characteristic length (e.g., size of the object or boundary layer thickness)
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Reynolds Number

The Reynolds number is defined as:

Re =
Inertia

Viscosity
=

ρUL

η
=

UL

ν

Note that dimensionless numbers do not remove the physical meaning of our problems but
help us identify which terms dominate the flow behavior.

• Re ≫ 1: Viscosity can be neglected (inertia dominates)

∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗ = −1

ρ
∇⃗P

• Re ≪ 1: Inertia can be neglected (viscosity dominates)

−∇⃗P + η ∇⃗2u⃗ = 0
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Stokes Drag

Stokes drag develops at the boundary between the fluid and the surface, where viscosity plays
a crucial role:

• For Re ≪ 1: F⃗ ∝ ηUL (Stokes law), e.g. F = 6πηRU for a sphere

• For Re ≫ 1: F⃗ ∝ 1
2CDρSU

2 (drag force, with F⃗ opposite to the flow direction)

The total drag force consists of contributions from both pressure and viscous forces.
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Magnus Effect

The Magnus effect refers to the lateral force experienced by a spinning object moving through
a fluid, causing it to deviate from a straight-line path due to asymmetric pressure distribution.

1. Spinning Cylinder (2D – Analytical):

FM = ρUΓ, Γ = 2πR2ω

2. Spinning Ball (3D – Empirical):

FM = CL ·
1

2
ρU2A, A = πR2

with spin parameter S = ωR
U and CL ≈ 1.2S for small S .
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Magnus Effect
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