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Introduction

In this chapter, we will study fundamental properties that arise from the velocity field of a
fluid, specifically:

Vorticity 5
Circulation I

Velocity potential ¢

Stream function V
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Vorticity describes the rotational tendency of the velocity field & and is given by:
E: V x i
In practice, vorticity is twice the local angular velocity:
(=2-% = d=&xTF

In cases where a velocity field has no vorticity, but an angular velocity still exists, the flow is
called an irrotational vortex (or free vortex).

An intuitive way to understand vorticity is to imagine placing a small paddle wheel at a point
of interest and observing how it spins due to the local velocity gradients.
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Circulation

The circulation I of the velocity field i around a closed curve C is equal to the flux of vorticity
¢ through any surface S bounded by C:

~far= o

3>
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Kelvin's Theorem

The circulation around a closed curve moving with the fluid remains constant over time:
dr
dt

When can we apply this? In cases where there is no viscosity and the forces are conservative

(e.g., no magnetic forces), such that

vP_
p

0 = Circulation is conserved

Vh = Kelvin's criterion

where h depends on the fluid type:
e Incompressible fluid: h = g

Adiabatic, steady flow: h = specific enthalpy

Adiabatic, steady ideal gas: h = o

kg T
® Isothermal: h = “E=1In(p)
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Kelvin's Theorem

Using the above theorem, the evolution of vorticity can be expressed as:

d& - .
e =(( V)i~V )

Note that for an incompressible fluid:

—

V.i=0 = (V- -0)=0

An important consequence of the vorticity equation is that in regions of the fluid where the
velocity field is irrotational, the vorticity vanishes:

(=0
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Velocity Potential ®

—

In the case where the velocity field is irrotational, { = 0, we require the existence of a scalar

potential such that:
Vxi=0 = o«=-Vo

e Cartesian Coordinates:

X aX Y y ay ) z 82
e Polar Coordinates:
b oo 100
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Velocity Potential ®

For an irrotational fluid, the momentum equation reads:

ou u? >
E —|—V<2 > +(xd=—-V(h+ &)
Setting E: 0 and 0= -V, we get:
od  |Vo|? B
—a"‘ 5 +h+¢g—f(t)

which is the Bernoulli equation for irrotational flow, where

f(t) = E Y streamline.

Therefore, to find the pressure P, we consider:
° 5: 0: from Bernoulli equation
® ( # 0: from momentum equation
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Stream Function ¥

For an incompressible fluid, we start from the continuity equation:

ap o
a+V~(pu)—0 =

dp
— =0 = V.-i=0
ot “
Therefore, there exists a stream function W € R? such that
U=V x(V2)=VV x 2

Knowing the expression for the stream function ¥ allows us to determine the streamlines,
which correspond to

U/ = constant.
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Stream Function ¥

e Cartesian coordinates:

oyt Y ox
® Polar coordinates:
_lovo OV
=0 T e
e Axisymmetric cylindrical coordinates:
10V 10V
Ur = u, — ——

rdz’ % ror
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Laplace Equation

For an irrotational flow, we seek a velocity potential ®, while for an incompressible velocity
field, we seek a stream function W. Consider a fluid with the following properties:

® Incompressible and irrotational: V-7=0 = V20 =0
® Incompressible and irrotational (2D): Vx #=0 = V¥ =0

Vo .-VV =0

The gradients of ® and V are perpendicular, so equipotential lines and streamlines intersect at
right angles.
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Boundary Conditions

Boundary conditions are essential to uniquely solve flow problems. Common types include:

® No-slip condition: Velocity of the fluid at a solid boundary equals the velocity of the
boundary itself,

—

U = Uwpall

® Free-slip (impermeable) condition: No penetration through the boundary (normal
velocity zero),

od
o
¢ Inflow/Outflow condition: Continuity of normal derivatives of velocity potential across
the boundary,
- 99 99
U = Unflow, P = Poutflow = azut - 8:‘ =0

uv-n=0 0
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Laplace Equation - Solutions

The well-known solutions to Laplace's equation are:
® Cylindrical Coordinates:

®(p,0) = Ao+ BolIn(p +Z(mp —|—B>cos(m6 +Z<mp +D )sin(m&)
m=1 m=1

® Spherical Coordinates:
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Complex Potential

For incompressible and irrotational flows, we can define the complex potential W(z), where:
= Vo
{” s = W(z)=d(x,y) + i V(x,y)

The functions ¢ and WV satisfy the Cauchy—Riemann equations:

9 v 9® oV
ox Oy’ Oy  Ox

Thus, W(z) is an analytic function of the complex variable z = x + iy, and contains the full
information about the velocity field.
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Characteristic Flow Sources

The mass flow rate is defined as:
M = // pu- dA
A

e Spherical Source — M:

1 M 1 M
up = 55— O(r)=—1+-—
4re  p dnr  p
e Line Source — M/L:
1 M M
=——, ®(®@)= In(@
= e pl’ (@) 27pl n(@)

Note: The volume flow rate % corresponds to the electric charge g in electrostatics!
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Coanda Effect

As fluid flows along a curved surface of radius R, the pressure gradient normal to the flow is
related to the centrifugal acceleration by

u? 1 0P

R pon’

Because pressure decreases toward the center of curvature, the low-pressure region “pulls” the
fluid, keeping it attached to the surface.

. oP .
Conclusion: an < 0 for positive curvature, so the flow follows the surface.
n
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