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Introduction

In this chapter, we study ideal fluids — fluids that exhibit no viscosity. The discussion applies
to both compressible and incompressible flows. Specifically, we examine three fundamental
conservation laws:

• Conservation of Mass (Continuity Equation)

• Conservation of Momentum

• Conservation of Energy
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Conservation of Mass

The conservation of mass is expressed by the continuity equation, which in general form reads:

∂(density)

∂t
+ ∇⃗ · (flow) = sources − sinks

For a fluid with density ρ and velocity field u⃗, this becomes:

∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0

Note: If mass sources or sinks are present (e.g., chemical reactions or mass injection), the
right-hand side is non-zero.
In the case of incompressible flow (ρ = constant), the continuity equation simplifies to:

∇⃗ · u⃗ = 0
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Conservation of Mass

The divergence ∇⃗ · u⃗ describes the local rate of volumetric expansion or compression of the
fluid:

• ∇⃗ · u⃗ > 0: the flow diverges — the fluid expands locally (acts as a source),

• ∇⃗ · u⃗ < 0: the flow converges — the fluid compresses locally (acts as a sink).

The conservation of mass can also be written in integral form:

−
∫∫∫

V

∂ρ

∂t
dτ =

∫∫
∂V

ρu⃗ · da⃗

Left-hand side: rate of increase of mass inside the control volume V .
Right-hand side: net mass flux out of the control volume across the surface ∂V .
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Conservation of Momentum

The conservation of momentum in a fluid expresses Newton’s second law: the rate of change
of momentum equals the sum of forces.
For an inviscid fluid, the Euler equation is:

ρ

(
∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗

)
= −∇⃗P + f⃗b

Where:

• Eulerian acceleration — total acceleration of a fluid particle,

• pressure gradient force — acts from high to low pressure (per unit volume),

• body force density — external force per unit volume acting throughout the fluid (e.g.,
gravity: f⃗b = ρg⃗).
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Conservation of Momentum

From the conservation of momentum, we can compute the total force exerted by pressure
on a control volume:

F⃗pressure = −
∫∫

∂V
P da⃗

This surface integral represents the net pressure force acting on the boundary ∂V .

Using the divergence theorem:

F⃗pressure = −
∫∫∫

V
∇⃗P dτ, since

∫∫
∂V

P da⃗ =

∫∫∫
V
∇⃗P dτ

Tip: For any closed surface,
∫∫

∂V da⃗ = 0. This allows us to replace a complex surface with a
simpler one to ease pressure force calculations, as long as the total surface remains closed.
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Conservation of Energy

The conservation of energy for compressible fluids (e.g., gas) is:

δQ = dU + P dτ ⇒ δq = de + P dτ

while:

δq = de + P dτ with e =
1

γ − 1

P

ρ

The conservation of energy leads to the following expressions for specific thermodynamic
processes:

• Adiabatic process: δq = 0 ⇒ P

ργ
= const

• Isothermal process: T = const ⇒ P

ρ
= const

• Polytropic gas: γ =
Cp

Cv
⇒ P = Aργeff

• Ideal (isentropic) fluid: ⇒ d

dt

(
P

ργ

)
= 0
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Boundary Conditions

To solve the governing PDEs, we must define the appropriate boundary conditions:

• u⃗⊥ = u⃗surface (normal velocity must match the boundary velocity),

• P = Psurface (pressure continuity for ideal fluids).

For static fluids (u⃗ = 0), the boundary conditions reduce to:

• u⃗1 = u⃗2 (velocity continuity across the interface),

• P1 = P2 (pressure continuity across the interface for ideal fluids).
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Bernoulli’s Equation

Bernoulli’s equation is derived by requiring the flow to be steady and inviscid. From the
momentum equation:

u⃗ · ∇⃗
(
u2

2
+ h +Φg

)
= 0 ⇒ u2

2
+ h +Φg = E

where E is constant along each streamline.

Note that Bernoulli’s equation holds only if:

u⃗ · ∇⃗P

ρ
= u⃗ · ∇⃗h

Special forms:

• Incompressible fluids: h = P
ρ ⇒ u2

2
+

P

ρ
+Φg = E

• Ideal gas (isentropic): h = γ
γ−1

P
ρ ⇒ u2

2
+

γ

γ − 1

P

ρ
+Φg = E
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Acceleration and Pressure

The dependence of pressure on acceleration is given by the momentum conservation equation:

ρa⃗ = −∇⃗P + �
��
0

f⃗

This simplified form is valid only when external body forces (such as gravity) are negligible.

Note: Although ∇⃗ × ∇⃗P = 0 holds identically, the pressure gradient alone cannot
generate rotational motion in the fluid. If the flow is rotational, it must be due to other
forces (e.g., body forces or viscosity).
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